This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005) (Proof shortened by Andrew Salmon, 14-Jun-2011) (Proof shortened by Wolf Lammen, 1-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euim | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ∃! 𝑥 𝜓 → ∃! 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euimmo | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∃! 𝑥 𝜓 → ∃* 𝑥 𝜑 ) ) | |
| 2 | exmoeub | ⊢ ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 ↔ ∃! 𝑥 𝜑 ) ) | |
| 3 | 2 | biimpd | ⊢ ( ∃ 𝑥 𝜑 → ( ∃* 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) |
| 4 | 1 3 | sylan9r | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) → ( ∃! 𝑥 𝜓 → ∃! 𝑥 𝜑 ) ) |