This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2eu1v when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 23-Apr-2023) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu1 | |- ( A. x E* y ph -> ( E! x E! y ph <-> ( E! x E. y ph /\ E! y E. x ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2eu2ex | |- ( E! x E! y ph -> E. x E. y ph ) |
|
| 2 | moeu | |- ( E* y ph <-> ( E. y ph -> E! y ph ) ) |
|
| 3 | 2 | albii | |- ( A. x E* y ph <-> A. x ( E. y ph -> E! y ph ) ) |
| 4 | euim | |- ( ( E. x E. y ph /\ A. x ( E. y ph -> E! y ph ) ) -> ( E! x E! y ph -> E! x E. y ph ) ) |
|
| 5 | 3 4 | sylan2b | |- ( ( E. x E. y ph /\ A. x E* y ph ) -> ( E! x E! y ph -> E! x E. y ph ) ) |
| 6 | 5 | ex | |- ( E. x E. y ph -> ( A. x E* y ph -> ( E! x E! y ph -> E! x E. y ph ) ) ) |
| 7 | 1 6 | syl | |- ( E! x E! y ph -> ( A. x E* y ph -> ( E! x E! y ph -> E! x E. y ph ) ) ) |
| 8 | 7 | pm2.43b | |- ( A. x E* y ph -> ( E! x E! y ph -> E! x E. y ph ) ) |
| 9 | 2euswap | |- ( A. x E* y ph -> ( E! x E. y ph -> E! y E. x ph ) ) |
|
| 10 | 8 9 | syld | |- ( A. x E* y ph -> ( E! x E! y ph -> E! y E. x ph ) ) |
| 11 | 8 10 | jcad | |- ( A. x E* y ph -> ( E! x E! y ph -> ( E! x E. y ph /\ E! y E. x ph ) ) ) |
| 12 | 2exeu | |- ( ( E! x E. y ph /\ E! y E. x ph ) -> E! x E! y ph ) |
|
| 13 | 11 12 | impbid1 | |- ( A. x E* y ph -> ( E! x E! y ph <-> ( E! x E. y ph /\ E! y E. x ph ) ) ) |