This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2elresin | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnop | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) → 𝑥 ∈ 𝐴 ) | |
| 2 | fnop | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) → 𝑥 ∈ 𝐵 ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ∧ ( 𝐺 Fn 𝐵 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 4 | 3 | an4s | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ) → ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 5 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 6 | 4 5 | sylibr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ) → 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | 7 | opres | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) |
| 9 | vex | ⊢ 𝑧 ∈ V | |
| 10 | 9 | opres | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ) ) |
| 12 | 11 | biimprd | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 13 | 6 12 | syl | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) ) ) |
| 15 | 14 | pm2.43d | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |
| 16 | resss | ⊢ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐹 | |
| 17 | 16 | sseli | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) → 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) |
| 18 | resss | ⊢ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝐺 | |
| 19 | 18 | sseli | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) → 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) |
| 20 | 17 19 | anim12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ) |
| 21 | 15 20 | impbid1 | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐺 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) ∧ 〈 𝑥 , 𝑧 〉 ∈ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) ) |