This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2elresin | |- ( ( F Fn A /\ G Fn B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) <-> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnop | |- ( ( F Fn A /\ <. x , y >. e. F ) -> x e. A ) |
|
| 2 | fnop | |- ( ( G Fn B /\ <. x , z >. e. G ) -> x e. B ) |
|
| 3 | 1 2 | anim12i | |- ( ( ( F Fn A /\ <. x , y >. e. F ) /\ ( G Fn B /\ <. x , z >. e. G ) ) -> ( x e. A /\ x e. B ) ) |
| 4 | 3 | an4s | |- ( ( ( F Fn A /\ G Fn B ) /\ ( <. x , y >. e. F /\ <. x , z >. e. G ) ) -> ( x e. A /\ x e. B ) ) |
| 5 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 6 | 4 5 | sylibr | |- ( ( ( F Fn A /\ G Fn B ) /\ ( <. x , y >. e. F /\ <. x , z >. e. G ) ) -> x e. ( A i^i B ) ) |
| 7 | vex | |- y e. _V |
|
| 8 | 7 | opres | |- ( x e. ( A i^i B ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) <-> <. x , y >. e. F ) ) |
| 9 | vex | |- z e. _V |
|
| 10 | 9 | opres | |- ( x e. ( A i^i B ) -> ( <. x , z >. e. ( G |` ( A i^i B ) ) <-> <. x , z >. e. G ) ) |
| 11 | 8 10 | anbi12d | |- ( x e. ( A i^i B ) -> ( ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) <-> ( <. x , y >. e. F /\ <. x , z >. e. G ) ) ) |
| 12 | 11 | biimprd | |- ( x e. ( A i^i B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |
| 13 | 6 12 | syl | |- ( ( ( F Fn A /\ G Fn B ) /\ ( <. x , y >. e. F /\ <. x , z >. e. G ) ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |
| 14 | 13 | ex | |- ( ( F Fn A /\ G Fn B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) ) |
| 15 | 14 | pm2.43d | |- ( ( F Fn A /\ G Fn B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) -> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |
| 16 | resss | |- ( F |` ( A i^i B ) ) C_ F |
|
| 17 | 16 | sseli | |- ( <. x , y >. e. ( F |` ( A i^i B ) ) -> <. x , y >. e. F ) |
| 18 | resss | |- ( G |` ( A i^i B ) ) C_ G |
|
| 19 | 18 | sseli | |- ( <. x , z >. e. ( G |` ( A i^i B ) ) -> <. x , z >. e. G ) |
| 20 | 17 19 | anim12i | |- ( ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) -> ( <. x , y >. e. F /\ <. x , z >. e. G ) ) |
| 21 | 15 20 | impbid1 | |- ( ( F Fn A /\ G Fn B ) -> ( ( <. x , y >. e. F /\ <. x , z >. e. G ) <-> ( <. x , y >. e. ( F |` ( A i^i B ) ) /\ <. x , z >. e. ( G |` ( A i^i B ) ) ) ) ) |