This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stval | ⊢ ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
| 2 | 1 | dmeqd | ⊢ ( 𝑥 = 𝐴 → dom { 𝑥 } = dom { 𝐴 } ) |
| 3 | 2 | unieqd | ⊢ ( 𝑥 = 𝐴 → ∪ dom { 𝑥 } = ∪ dom { 𝐴 } ) |
| 4 | df-1st | ⊢ 1st = ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) | |
| 5 | snex | ⊢ { 𝐴 } ∈ V | |
| 6 | 5 | dmex | ⊢ dom { 𝐴 } ∈ V |
| 7 | 6 | uniex | ⊢ ∪ dom { 𝐴 } ∈ V |
| 8 | 3 4 7 | fvmpt | ⊢ ( 𝐴 ∈ V → ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } ) |
| 9 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( 1st ‘ 𝐴 ) = ∅ ) | |
| 10 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 11 | 10 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 12 | 11 | dmeqd | ⊢ ( ¬ 𝐴 ∈ V → dom { 𝐴 } = dom ∅ ) |
| 13 | dm0 | ⊢ dom ∅ = ∅ | |
| 14 | 12 13 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → dom { 𝐴 } = ∅ ) |
| 15 | 14 | unieqd | ⊢ ( ¬ 𝐴 ∈ V → ∪ dom { 𝐴 } = ∪ ∅ ) |
| 16 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 17 | 15 16 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ∪ dom { 𝐴 } = ∅ ) |
| 18 | 9 17 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } ) |
| 19 | 8 18 | pm2.61i | ⊢ ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } |