This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stval | |- ( 1st ` A ) = U. dom { A } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( x = A -> { x } = { A } ) |
|
| 2 | 1 | dmeqd | |- ( x = A -> dom { x } = dom { A } ) |
| 3 | 2 | unieqd | |- ( x = A -> U. dom { x } = U. dom { A } ) |
| 4 | df-1st | |- 1st = ( x e. _V |-> U. dom { x } ) |
|
| 5 | snex | |- { A } e. _V |
|
| 6 | 5 | dmex | |- dom { A } e. _V |
| 7 | 6 | uniex | |- U. dom { A } e. _V |
| 8 | 3 4 7 | fvmpt | |- ( A e. _V -> ( 1st ` A ) = U. dom { A } ) |
| 9 | fvprc | |- ( -. A e. _V -> ( 1st ` A ) = (/) ) |
|
| 10 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 11 | 10 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 12 | 11 | dmeqd | |- ( -. A e. _V -> dom { A } = dom (/) ) |
| 13 | dm0 | |- dom (/) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( -. A e. _V -> dom { A } = (/) ) |
| 15 | 14 | unieqd | |- ( -. A e. _V -> U. dom { A } = U. (/) ) |
| 16 | uni0 | |- U. (/) = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( -. A e. _V -> U. dom { A } = (/) ) |
| 18 | 9 17 | eqtr4d | |- ( -. A e. _V -> ( 1st ` A ) = U. dom { A } ) |
| 19 | 8 18 | pm2.61i | |- ( 1st ` A ) = U. dom { A } |