This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of 1div0 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1div0OLD | ⊢ ( 1 / 0 ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-div | ⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 2 | riotaex | ⊢ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ∈ V | |
| 3 | 1 2 | dmmpo | ⊢ dom / = ( ℂ × ( ℂ ∖ { 0 } ) ) |
| 4 | eqid | ⊢ 0 = 0 | |
| 5 | eldifsni | ⊢ ( 0 ∈ ( ℂ ∖ { 0 } ) → 0 ≠ 0 ) | |
| 6 | 5 | adantl | ⊢ ( ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) → 0 ≠ 0 ) |
| 7 | 6 | necon2bi | ⊢ ( 0 = 0 → ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) ) |
| 8 | 4 7 | ax-mp | ⊢ ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) |
| 9 | ndmovg | ⊢ ( ( dom / = ( ℂ × ( ℂ ∖ { 0 } ) ) ∧ ¬ ( 1 ∈ ℂ ∧ 0 ∈ ( ℂ ∖ { 0 } ) ) ) → ( 1 / 0 ) = ∅ ) | |
| 10 | 3 8 9 | mp2an | ⊢ ( 1 / 0 ) = ∅ |