This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of 1div0 as of 5-Jun-2025. (Contributed by Mario Carneiro, 1-Apr-2014) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1div0OLD | |- ( 1 / 0 ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-div | |- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
|
| 2 | riotaex | |- ( iota_ z e. CC ( y x. z ) = x ) e. _V |
|
| 3 | 1 2 | dmmpo | |- dom / = ( CC X. ( CC \ { 0 } ) ) |
| 4 | eqid | |- 0 = 0 |
|
| 5 | eldifsni | |- ( 0 e. ( CC \ { 0 } ) -> 0 =/= 0 ) |
|
| 6 | 5 | adantl | |- ( ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) -> 0 =/= 0 ) |
| 7 | 6 | necon2bi | |- ( 0 = 0 -> -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) ) |
| 8 | 4 7 | ax-mp | |- -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) |
| 9 | ndmovg | |- ( ( dom / = ( CC X. ( CC \ { 0 } ) ) /\ -. ( 1 e. CC /\ 0 e. ( CC \ { 0 } ) ) ) -> ( 1 / 0 ) = (/) ) |
|
| 10 | 3 8 9 | mp2an | |- ( 1 / 0 ) = (/) |