This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1cossres | |- ,~ ( R |` A ) = { <. x , y >. | E. u e. A ( u R x /\ u R y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-coss | |- ,~ ( R |` A ) = { <. x , y >. | E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) } |
|
| 2 | df-rex | |- ( E. u e. A ( u R x /\ u R y ) <-> E. u ( u e. A /\ ( u R x /\ u R y ) ) ) |
|
| 3 | anandi | |- ( ( u e. A /\ ( u R x /\ u R y ) ) <-> ( ( u e. A /\ u R x ) /\ ( u e. A /\ u R y ) ) ) |
|
| 4 | brres | |- ( x e. _V -> ( u ( R |` A ) x <-> ( u e. A /\ u R x ) ) ) |
|
| 5 | 4 | elv | |- ( u ( R |` A ) x <-> ( u e. A /\ u R x ) ) |
| 6 | brres | |- ( y e. _V -> ( u ( R |` A ) y <-> ( u e. A /\ u R y ) ) ) |
|
| 7 | 6 | elv | |- ( u ( R |` A ) y <-> ( u e. A /\ u R y ) ) |
| 8 | 5 7 | anbi12i | |- ( ( u ( R |` A ) x /\ u ( R |` A ) y ) <-> ( ( u e. A /\ u R x ) /\ ( u e. A /\ u R y ) ) ) |
| 9 | 3 8 | bitr4i | |- ( ( u e. A /\ ( u R x /\ u R y ) ) <-> ( u ( R |` A ) x /\ u ( R |` A ) y ) ) |
| 10 | 9 | exbii | |- ( E. u ( u e. A /\ ( u R x /\ u R y ) ) <-> E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) ) |
| 11 | 2 10 | bitri | |- ( E. u e. A ( u R x /\ u R y ) <-> E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) ) |
| 12 | 11 | opabbii | |- { <. x , y >. | E. u e. A ( u R x /\ u R y ) } = { <. x , y >. | E. u ( u ( R |` A ) x /\ u ( R |` A ) y ) } |
| 13 | 1 12 | eqtr4i | |- ,~ ( R |` A ) = { <. x , y >. | E. u e. A ( u R x /\ u R y ) } |