This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
0trl
Metamath Proof Explorer
Description: A pair of an empty set (of edges) and a second set (of vertices) is a
trail iff the second set contains exactly one vertex. (Contributed by Alexander van der Vekens , 30-Oct-2017) (Revised by AV , 7-Jan-2021)
(Revised by AV , 30-Oct-2021)
Ref
Expression
Hypothesis
0wlk.v
⊢ V = Vtx ⁡ G
Assertion
0trl
⊢ G ∈ U → ∅ Trails ⁡ G P ↔ P : 0 … 0 ⟶ V
Proof
Step
Hyp
Ref
Expression
1
0wlk.v
⊢ V = Vtx ⁡ G
2
1
0wlk
⊢ G ∈ U → ∅ Walks ⁡ G P ↔ P : 0 … 0 ⟶ V
3
2
anbi1d
⊢ G ∈ U → ∅ Walks ⁡ G P ∧ Fun ⁡ ∅ -1 ↔ P : 0 … 0 ⟶ V ∧ Fun ⁡ ∅ -1
4
istrl
⊢ ∅ Trails ⁡ G P ↔ ∅ Walks ⁡ G P ∧ Fun ⁡ ∅ -1
5
funcnv0
⊢ Fun ⁡ ∅ -1
6
5
biantru
⊢ P : 0 … 0 ⟶ V ↔ P : 0 … 0 ⟶ V ∧ Fun ⁡ ∅ -1
7
3 4 6
3bitr4g
⊢ G ∈ U → ∅ Trails ⁡ G P ↔ P : 0 … 0 ⟶ V