This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any category C , the empty set is a (full) subcategory of C , see example 4.3(1.a) in Adamek p. 48. (Contributed by AV, 23-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0subcat | ⊢ ( 𝐶 ∈ Cat → ∅ ∈ ( Subcat ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ssc | ⊢ ( 𝐶 ∈ Cat → ∅ ⊆cat ( Homf ‘ 𝐶 ) ) | |
| 2 | ral0 | ⊢ ∀ 𝑥 ∈ ∅ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ∅ 𝑥 ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑓 ∈ ( 𝑥 ∅ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ∅ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ∅ 𝑧 ) ) | |
| 3 | 2 | a1i | ⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ∅ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ∅ 𝑥 ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑓 ∈ ( 𝑥 ∅ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ∅ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ∅ 𝑧 ) ) ) |
| 4 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 7 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 8 | f0 | ⊢ ∅ : ∅ ⟶ ∅ | |
| 9 | ffn | ⊢ ( ∅ : ∅ ⟶ ∅ → ∅ Fn ∅ ) | |
| 10 | 8 9 | ax-mp | ⊢ ∅ Fn ∅ |
| 11 | 0xp | ⊢ ( ∅ × ∅ ) = ∅ | |
| 12 | 11 | fneq2i | ⊢ ( ∅ Fn ( ∅ × ∅ ) ↔ ∅ Fn ∅ ) |
| 13 | 10 12 | mpbir | ⊢ ∅ Fn ( ∅ × ∅ ) |
| 14 | 13 | a1i | ⊢ ( 𝐶 ∈ Cat → ∅ Fn ( ∅ × ∅ ) ) |
| 15 | 4 5 6 7 14 | issubc2 | ⊢ ( 𝐶 ∈ Cat → ( ∅ ∈ ( Subcat ‘ 𝐶 ) ↔ ( ∅ ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ ∅ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ∅ 𝑥 ) ∧ ∀ 𝑦 ∈ ∅ ∀ 𝑧 ∈ ∅ ∀ 𝑓 ∈ ( 𝑥 ∅ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ∅ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ∅ 𝑧 ) ) ) ) ) |
| 16 | 1 3 15 | mpbir2and | ⊢ ( 𝐶 ∈ Cat → ∅ ∈ ( Subcat ‘ 𝐶 ) ) |