This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any category C , the empty set is a (full) subcategory of C , see example 4.3(1.a) in Adamek p. 48. (Contributed by AV, 23-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0subcat | |- ( C e. Cat -> (/) e. ( Subcat ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ssc | |- ( C e. Cat -> (/) C_cat ( Homf ` C ) ) |
|
| 2 | ral0 | |- A. x e. (/) ( ( ( Id ` C ) ` x ) e. ( x (/) x ) /\ A. y e. (/) A. z e. (/) A. f e. ( x (/) y ) A. g e. ( y (/) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x (/) z ) ) |
|
| 3 | 2 | a1i | |- ( C e. Cat -> A. x e. (/) ( ( ( Id ` C ) ` x ) e. ( x (/) x ) /\ A. y e. (/) A. z e. (/) A. f e. ( x (/) y ) A. g e. ( y (/) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x (/) z ) ) ) |
| 4 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 5 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 6 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 7 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 8 | f0 | |- (/) : (/) --> (/) |
|
| 9 | ffn | |- ( (/) : (/) --> (/) -> (/) Fn (/) ) |
|
| 10 | 8 9 | ax-mp | |- (/) Fn (/) |
| 11 | 0xp | |- ( (/) X. (/) ) = (/) |
|
| 12 | 11 | fneq2i | |- ( (/) Fn ( (/) X. (/) ) <-> (/) Fn (/) ) |
| 13 | 10 12 | mpbir | |- (/) Fn ( (/) X. (/) ) |
| 14 | 13 | a1i | |- ( C e. Cat -> (/) Fn ( (/) X. (/) ) ) |
| 15 | 4 5 6 7 14 | issubc2 | |- ( C e. Cat -> ( (/) e. ( Subcat ` C ) <-> ( (/) C_cat ( Homf ` C ) /\ A. x e. (/) ( ( ( Id ` C ) ` x ) e. ( x (/) x ) /\ A. y e. (/) A. z e. (/) A. f e. ( x (/) y ) A. g e. ( y (/) z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x (/) z ) ) ) ) ) |
| 16 | 1 3 15 | mpbir2and | |- ( C e. Cat -> (/) e. ( Subcat ` C ) ) |