This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0psub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| Assertion | 0psubN | ⊢ ( 𝐾 ∈ 𝑉 → ∅ ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0psub.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 2 | 0ss | ⊢ ∅ ⊆ ( Atoms ‘ 𝐾 ) | |
| 3 | ral0 | ⊢ ∀ 𝑝 ∈ ∅ ∀ 𝑞 ∈ ∅ ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∅ ) | |
| 4 | 2 3 | pm3.2i | ⊢ ( ∅ ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ ∅ ∀ 𝑞 ∈ ∅ ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∅ ) ) |
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 8 | 5 6 7 1 | ispsubsp | ⊢ ( 𝐾 ∈ 𝑉 → ( ∅ ∈ 𝑆 ↔ ( ∅ ⊆ ( Atoms ‘ 𝐾 ) ∧ ∀ 𝑝 ∈ ∅ ∀ 𝑞 ∈ ∅ ∀ 𝑟 ∈ ( Atoms ‘ 𝐾 ) ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∅ ) ) ) ) |
| 9 | 4 8 | mpbiri | ⊢ ( 𝐾 ∈ 𝑉 → ∅ ∈ 𝑆 ) |