This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is a projective subspace. Remark below Definition 15.1 of MaedaMaeda p. 61. (Contributed by NM, 13-Oct-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0psub.s | |- S = ( PSubSp ` K ) |
|
| Assertion | 0psubN | |- ( K e. V -> (/) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0psub.s | |- S = ( PSubSp ` K ) |
|
| 2 | 0ss | |- (/) C_ ( Atoms ` K ) |
|
| 3 | ral0 | |- A. p e. (/) A. q e. (/) A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. (/) ) |
|
| 4 | 2 3 | pm3.2i | |- ( (/) C_ ( Atoms ` K ) /\ A. p e. (/) A. q e. (/) A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. (/) ) ) |
| 5 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 6 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 7 | eqid | |- ( Atoms ` K ) = ( Atoms ` K ) |
|
| 8 | 5 6 7 1 | ispsubsp | |- ( K e. V -> ( (/) e. S <-> ( (/) C_ ( Atoms ` K ) /\ A. p e. (/) A. q e. (/) A. r e. ( Atoms ` K ) ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. (/) ) ) ) ) |
| 9 | 4 8 | mpbiri | |- ( K e. V -> (/) e. S ) |