This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0mnnnnn0 | ⊢ ( 𝑁 ∈ ℕ → ( 0 − 𝑁 ) ∉ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | nnel | ⊢ ( ¬ ( 0 − 𝑁 ) ∉ ℕ0 ↔ ( 0 − 𝑁 ) ∈ ℕ0 ) | |
| 3 | df-neg | ⊢ - 𝑁 = ( 0 − 𝑁 ) | |
| 4 | 3 | eqcomi | ⊢ ( 0 − 𝑁 ) = - 𝑁 |
| 5 | 4 | eleq1i | ⊢ ( ( 0 − 𝑁 ) ∈ ℕ0 ↔ - 𝑁 ∈ ℕ0 ) |
| 6 | nn0ge0 | ⊢ ( - 𝑁 ∈ ℕ0 → 0 ≤ - 𝑁 ) | |
| 7 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 8 | 7 | le0neg1d | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) ) |
| 9 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 10 | 0red | ⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) | |
| 11 | 10 7 | ltnled | ⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 ↔ ¬ 𝑁 ≤ 0 ) ) |
| 12 | pm2.21 | ⊢ ( ¬ 𝑁 ≤ 0 → ( 𝑁 ≤ 0 → ¬ 0 ∈ ℝ ) ) | |
| 13 | 11 12 | biimtrdi | ⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 → ( 𝑁 ≤ 0 → ¬ 0 ∈ ℝ ) ) ) |
| 14 | 9 13 | mpd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 → ¬ 0 ∈ ℝ ) ) |
| 15 | 8 14 | sylbird | ⊢ ( 𝑁 ∈ ℕ → ( 0 ≤ - 𝑁 → ¬ 0 ∈ ℝ ) ) |
| 16 | 6 15 | syl5 | ⊢ ( 𝑁 ∈ ℕ → ( - 𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ ) ) |
| 17 | 5 16 | biimtrid | ⊢ ( 𝑁 ∈ ℕ → ( ( 0 − 𝑁 ) ∈ ℕ0 → ¬ 0 ∈ ℝ ) ) |
| 18 | 2 17 | biimtrid | ⊢ ( 𝑁 ∈ ℕ → ( ¬ ( 0 − 𝑁 ) ∉ ℕ0 → ¬ 0 ∈ ℝ ) ) |
| 19 | 1 18 | mt4i | ⊢ ( 𝑁 ∈ ℕ → ( 0 − 𝑁 ) ∉ ℕ0 ) |