This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0mnnnnn0 | |- ( N e. NN -> ( 0 - N ) e/ NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | nnel | |- ( -. ( 0 - N ) e/ NN0 <-> ( 0 - N ) e. NN0 ) |
|
| 3 | df-neg | |- -u N = ( 0 - N ) |
|
| 4 | 3 | eqcomi | |- ( 0 - N ) = -u N |
| 5 | 4 | eleq1i | |- ( ( 0 - N ) e. NN0 <-> -u N e. NN0 ) |
| 6 | nn0ge0 | |- ( -u N e. NN0 -> 0 <_ -u N ) |
|
| 7 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 8 | 7 | le0neg1d | |- ( N e. NN -> ( N <_ 0 <-> 0 <_ -u N ) ) |
| 9 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 10 | 0red | |- ( N e. NN -> 0 e. RR ) |
|
| 11 | 10 7 | ltnled | |- ( N e. NN -> ( 0 < N <-> -. N <_ 0 ) ) |
| 12 | pm2.21 | |- ( -. N <_ 0 -> ( N <_ 0 -> -. 0 e. RR ) ) |
|
| 13 | 11 12 | biimtrdi | |- ( N e. NN -> ( 0 < N -> ( N <_ 0 -> -. 0 e. RR ) ) ) |
| 14 | 9 13 | mpd | |- ( N e. NN -> ( N <_ 0 -> -. 0 e. RR ) ) |
| 15 | 8 14 | sylbird | |- ( N e. NN -> ( 0 <_ -u N -> -. 0 e. RR ) ) |
| 16 | 6 15 | syl5 | |- ( N e. NN -> ( -u N e. NN0 -> -. 0 e. RR ) ) |
| 17 | 5 16 | biimtrid | |- ( N e. NN -> ( ( 0 - N ) e. NN0 -> -. 0 e. RR ) ) |
| 18 | 2 17 | biimtrid | |- ( N e. NN -> ( -. ( 0 - N ) e/ NN0 -> -. 0 e. RR ) ) |
| 19 | 1 18 | mt4i | |- ( N e. NN -> ( 0 - N ) e/ NN0 ) |