This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem iftruei

Description: Inference associated with iftrue . (Contributed by BJ, 7-Oct-2018)

Ref Expression
Hypothesis iftruei.1 φ
Assertion iftruei if φ A B = A

Proof

Step Hyp Ref Expression
1 iftruei.1 φ
2 iftrue φ if φ A B = A
3 1 2 ax-mp if φ A B = A