This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation of an explicitly given group. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use grpplusg instead. (New usage is discouraged.) (Contributed by NM, 17-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpstrx.b | ||
| grpstrx.p | |||
| grpstrx.g | |||
| Assertion | grpplusgx |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpstrx.b | ||
| 2 | grpstrx.p | ||
| 3 | grpstrx.g | ||
| 4 | basendx | ||
| 5 | 4 | opeq1i | |
| 6 | plusgndx | ||
| 7 | 6 | opeq1i | |
| 8 | 5 7 | preq12i | |
| 9 | 3 8 | eqtr4i | |
| 10 | 9 | grpplusg | |
| 11 | 2 10 | ax-mp |