This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem grpmndd

Description: A group is a monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis grpmndd.1 φ G Grp
Assertion grpmndd φ G Mnd

Proof

Step Hyp Ref Expression
1 grpmndd.1 φ G Grp
2 grpmnd G Grp G Mnd
3 1 2 syl φ G Mnd