This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv . This theorem does not hold for arbitrary pseudographs: if either M or N is a proper class, then { M , N } e. E could still hold ( { M , N } would be either { M } or { N } , see prprc1 or prprc2 , i.e. a loop), but M e. V or N e. V would not be true. (Contributed by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | ||
| upgredg.e | |||
| Assertion | umgrpredgv |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | ||
| 2 | upgredg.e | ||
| 3 | 2 | eleq2i | |
| 4 | edgumgr | ||
| 5 | 3 4 | sylan2b | |
| 6 | eqid | ||
| 7 | 6 | hashprdifel | |
| 8 | 1 | eqcomi | |
| 9 | 8 | pweqi | |
| 10 | 9 | eleq2i | |
| 11 | prelpw | ||
| 12 | 11 | biimprd | |
| 13 | 10 12 | biimtrid | |
| 14 | 13 | 3adant3 | |
| 15 | 7 14 | syl | |
| 16 | 15 | impcom | |
| 17 | 5 16 | syl |