This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of TakeutiZaring p. 16. Note that C and D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opth1.1 | ||
| opth1.2 | |||
| Assertion | opth |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opth1.1 | ||
| 2 | opth1.2 | ||
| 3 | 1 2 | opth1 | |
| 4 | 1 2 | opi1 | |
| 5 | id | ||
| 6 | 4 5 | eleqtrid | |
| 7 | oprcl | ||
| 8 | 6 7 | syl | |
| 9 | 8 | simprd | |
| 10 | 3 | opeq1d | |
| 11 | 10 5 | eqtr3d | |
| 12 | 8 | simpld | |
| 13 | dfopg | ||
| 14 | 12 2 13 | sylancl | |
| 15 | 11 14 | eqtr3d | |
| 16 | dfopg | ||
| 17 | 8 16 | syl | |
| 18 | 15 17 | eqtr3d | |
| 19 | prex | ||
| 20 | prex | ||
| 21 | 19 20 | preqr2 | |
| 22 | 18 21 | syl | |
| 23 | preq2 | ||
| 24 | 23 | eqeq2d | |
| 25 | eqeq2 | ||
| 26 | 24 25 | imbi12d | |
| 27 | vex | ||
| 28 | 2 27 | preqr2 | |
| 29 | 26 28 | vtoclg | |
| 30 | 9 22 29 | sylc | |
| 31 | 3 30 | jca | |
| 32 | opeq12 | ||
| 33 | 31 32 | impbii |