This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ssoprab2i
Metamath Proof Explorer
Description: Inference of operation class abstraction subclass from implication.
(Contributed by NM , 11-Nov-1995) (Revised by David Abernethy , 19-Jun-2012)
Ref
Expression
Hypothesis
ssoprab2i.1
⊢ φ → ψ
Assertion
ssoprab2i
⊢ x y z | φ ⊆ x y z | ψ
Proof
Step
Hyp
Ref
Expression
1
ssoprab2i.1
⊢ φ → ψ
2
1
anim2i
⊢ w = x y ∧ φ → w = x y ∧ ψ
3
2
2eximi
⊢ ∃ x ∃ y w = x y ∧ φ → ∃ x ∃ y w = x y ∧ ψ
4
3
ssopab2i
⊢ w z | ∃ x ∃ y w = x y ∧ φ ⊆ w z | ∃ x ∃ y w = x y ∧ ψ
5
dfoprab2
⊢ x y z | φ = w z | ∃ x ∃ y w = x y ∧ φ
6
dfoprab2
⊢ x y z | ψ = w z | ∃ x ∃ y w = x y ∧ ψ
7
4 5 6
3sstr4i
⊢ x y z | φ ⊆ x y z | ψ