This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem 2eximi

Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005)

Ref Expression
Hypothesis eximi.1 φ ψ
Assertion 2eximi x y φ x y ψ

Proof

Step Hyp Ref Expression
1 eximi.1 φ ψ
2 1 eximi y φ y ψ
3 2 eximi x y φ x y ψ