This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssoprab2i.1 | |- ( ph -> ps ) |
|
| Assertion | ssoprab2i | |- { <. <. x , y >. , z >. | ph } C_ { <. <. x , y >. , z >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssoprab2i.1 | |- ( ph -> ps ) |
|
| 2 | 1 | anim2i | |- ( ( w = <. x , y >. /\ ph ) -> ( w = <. x , y >. /\ ps ) ) |
| 3 | 2 | 2eximi | |- ( E. x E. y ( w = <. x , y >. /\ ph ) -> E. x E. y ( w = <. x , y >. /\ ps ) ) |
| 4 | 3 | ssopab2i | |- { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } C_ { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ps ) } |
| 5 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 6 | dfoprab2 | |- { <. <. x , y >. , z >. | ps } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ps ) } |
|
| 7 | 4 5 6 | 3sstr4i | |- { <. <. x , y >. , z >. | ph } C_ { <. <. x , y >. , z >. | ps } |