This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
sbcco3gw
Metamath Proof Explorer
Description: Composition of two substitutions. Version of sbcco3g with a disjoint
variable condition, which does not require ax-13 . (Contributed by NM , 27-Nov-2005) Avoid ax-13 . (Revised by GG , 26-Jan-2024)
Ref
Expression
Hypothesis
sbcco3gw.1
⊢ x = A → B = C
Assertion
sbcco3gw
⊢ A ∈ V → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ
Proof
Step
Hyp
Ref
Expression
1
sbcco3gw.1
⊢ x = A → B = C
2
sbcnestgw
⊢ A ∈ V → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ ⦋ A / x ⦌ B / y ] ˙ φ
3
elex
⊢ A ∈ V → A ∈ V
4
nfcvd
⊢ A ∈ V → Ⅎ _ x C
5
4 1
csbiegf
⊢ A ∈ V → ⦋ A / x ⦌ B = C
6
dfsbcq
⊢ ⦋ A / x ⦌ B = C → [ ˙ ⦋ A / x ⦌ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ
7
3 5 6
3syl
⊢ A ∈ V → [ ˙ ⦋ A / x ⦌ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ
8
2 7
bitrd
⊢ A ∈ V → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ