This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
csbiegf
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit substitution into a
class. (Contributed by NM , 11-Nov-2005) (Revised by Mario Carneiro , 13-Oct-2016)
Ref
Expression
Hypotheses
csbiegf.1
⊢ A ∈ V → Ⅎ _ x C
csbiegf.2
⊢ x = A → B = C
Assertion
csbiegf
⊢ A ∈ V → ⦋ A / x ⦌ B = C
Proof
Step
Hyp
Ref
Expression
1
csbiegf.1
⊢ A ∈ V → Ⅎ _ x C
2
csbiegf.2
⊢ x = A → B = C
3
2
ax-gen
⊢ ∀ x x = A → B = C
4
csbiebt
⊢ A ∈ V ∧ Ⅎ _ x C → ∀ x x = A → B = C ↔ ⦋ A / x ⦌ B = C
5
1 4
mpdan
⊢ A ∈ V → ∀ x x = A → B = C ↔ ⦋ A / x ⦌ B = C
6
3 5
mpbii
⊢ A ∈ V → ⦋ A / x ⦌ B = C