This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
sbcco3g
Metamath Proof Explorer
Description: Composition of two substitutions. Usage of this theorem is discouraged
because it depends on ax-13 . Use the weaker sbcco3gw when
possible. (Contributed by NM , 27-Nov-2005) (Revised by Mario
Carneiro , 11-Nov-2016) (New usage is discouraged.)
Ref
Expression
Hypothesis
sbcco3g.1
⊢ x = A → B = C
Assertion
sbcco3g
⊢ A ∈ V → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ
Proof
Step
Hyp
Ref
Expression
1
sbcco3g.1
⊢ x = A → B = C
2
sbcnestg
⊢ A ∈ V → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ ⦋ A / x ⦌ B / y ] ˙ φ
3
elex
⊢ A ∈ V → A ∈ V
4
nfcvd
⊢ A ∈ V → Ⅎ _ x C
5
4 1
csbiegf
⊢ A ∈ V → ⦋ A / x ⦌ B = C
6
dfsbcq
⊢ ⦋ A / x ⦌ B = C → [ ˙ ⦋ A / x ⦌ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ
7
3 5 6
3syl
⊢ A ∈ V → [ ˙ ⦋ A / x ⦌ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ
8
2 7
bitrd
⊢ A ∈ V → [ ˙ A / x ] ˙ [ ˙ B / y ] ˙ φ ↔ [ ˙ C / y ] ˙ φ