This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The empty set
csbco3g
Metamath Proof Explorer
Description: Composition of two class substitutions. Usage of this theorem is
discouraged because it depends on ax-13 . (Contributed by NM , 27-Nov-2005) (Revised by Mario Carneiro , 11-Nov-2016)
(New usage is discouraged.)
Ref
Expression
Hypothesis
sbcco3g.1
⊢ x = A → B = C
Assertion
csbco3g
⊢ A ∈ V → ⦋ A / x ⦌ ⦋ B / y ⦌ D = ⦋ C / y ⦌ D
Proof
Step
Hyp
Ref
Expression
1
sbcco3g.1
⊢ x = A → B = C
2
csbnestg
⊢ A ∈ V → ⦋ A / x ⦌ ⦋ B / y ⦌ D = ⦋ ⦋ A / x ⦌ B / y ⦌ D
3
elex
⊢ A ∈ V → A ∈ V
4
nfcvd
⊢ A ∈ V → Ⅎ _ x C
5
4 1
csbiegf
⊢ A ∈ V → ⦋ A / x ⦌ B = C
6
3 5
syl
⊢ A ∈ V → ⦋ A / x ⦌ B = C
7
6
csbeq1d
⊢ A ∈ V → ⦋ ⦋ A / x ⦌ B / y ⦌ D = ⦋ C / y ⦌ D
8
2 7
eqtrd
⊢ A ∈ V → ⦋ A / x ⦌ ⦋ B / y ⦌ D = ⦋ C / y ⦌ D