This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem neneqd

Description: Deduction eliminating inequality definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis neneqd.1 φ A B
Assertion neneqd φ ¬ A = B

Proof

Step Hyp Ref Expression
1 neneqd.1 φ A B
2 df-ne A B ¬ A = B
3 1 2 sylib φ ¬ A = B