This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Derive the Axiom of Pairing
rext
Metamath Proof Explorer
Description: A theorem similar to extensionality, requiring the existence of a
singleton. Exercise 8 of TakeutiZaring p. 16. (Contributed by NM , 10-Aug-1993)
Ref
Expression
Assertion
rext
⊢ ∀ z x ∈ z → y ∈ z → x = y
Proof
Step
Hyp
Ref
Expression
1
vsnid
⊢ x ∈ x
2
vsnex
⊢ x ∈ V
3
eleq2
⊢ z = x → x ∈ z ↔ x ∈ x
4
eleq2
⊢ z = x → y ∈ z ↔ y ∈ x
5
3 4
imbi12d
⊢ z = x → x ∈ z → y ∈ z ↔ x ∈ x → y ∈ x
6
2 5
spcv
⊢ ∀ z x ∈ z → y ∈ z → x ∈ x → y ∈ x
7
1 6
mpi
⊢ ∀ z x ∈ z → y ∈ z → y ∈ x
8
velsn
⊢ y ∈ x ↔ y = x
9
equcomi
⊢ y = x → x = y
10
8 9
sylbi
⊢ y ∈ x → x = y
11
7 10
syl
⊢ ∀ z x ∈ z → y ∈ z → x = y