This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of TakeutiZaring p. 16. (Contributed by NM, 10-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rext | ⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 2 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 3 | eleq2 | ⊢ ( 𝑧 = { 𝑥 } → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ { 𝑥 } ) ) | |
| 4 | eleq2 | ⊢ ( 𝑧 = { 𝑥 } → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ { 𝑥 } ) ) | |
| 5 | 3 4 | imbi12d | ⊢ ( 𝑧 = { 𝑥 } → ( ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ↔ ( 𝑥 ∈ { 𝑥 } → 𝑦 ∈ { 𝑥 } ) ) ) |
| 6 | 2 5 | spcv | ⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) → ( 𝑥 ∈ { 𝑥 } → 𝑦 ∈ { 𝑥 } ) ) |
| 7 | 1 6 | mpi | ⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) → 𝑦 ∈ { 𝑥 } ) |
| 8 | velsn | ⊢ ( 𝑦 ∈ { 𝑥 } ↔ 𝑦 = 𝑥 ) | |
| 9 | equcomi | ⊢ ( 𝑦 = 𝑥 → 𝑥 = 𝑦 ) | |
| 10 | 8 9 | sylbi | ⊢ ( 𝑦 ∈ { 𝑥 } → 𝑥 = 𝑦 ) |
| 11 | 7 10 | syl | ⊢ ( ∀ 𝑧 ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) → 𝑥 = 𝑦 ) |