This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem spcv

Description: Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994)

Ref Expression
Hypotheses spcv.1 A V
spcv.2 x = A φ ψ
Assertion spcv x φ ψ

Proof

Step Hyp Ref Expression
1 spcv.1 A V
2 spcv.2 x = A φ ψ
3 2 spcgv A V x φ ψ
4 1 3 ax-mp x φ ψ