This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of TakeutiZaring p. 16. (Contributed by NM, 10-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rext | |- ( A. z ( x e. z -> y e. z ) -> x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid | |- x e. { x } |
|
| 2 | vsnex | |- { x } e. _V |
|
| 3 | eleq2 | |- ( z = { x } -> ( x e. z <-> x e. { x } ) ) |
|
| 4 | eleq2 | |- ( z = { x } -> ( y e. z <-> y e. { x } ) ) |
|
| 5 | 3 4 | imbi12d | |- ( z = { x } -> ( ( x e. z -> y e. z ) <-> ( x e. { x } -> y e. { x } ) ) ) |
| 6 | 2 5 | spcv | |- ( A. z ( x e. z -> y e. z ) -> ( x e. { x } -> y e. { x } ) ) |
| 7 | 1 6 | mpi | |- ( A. z ( x e. z -> y e. z ) -> y e. { x } ) |
| 8 | velsn | |- ( y e. { x } <-> y = x ) |
|
| 9 | equcomi | |- ( y = x -> x = y ) |
|
| 10 | 8 9 | sylbi | |- ( y e. { x } -> x = y ) |
| 11 | 7 10 | syl | |- ( A. z ( x e. z -> y e. z ) -> x = y ) |