This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: Restricted specialization with two quantifiers, using implicit
substitution. (Contributed by NM, 9-Nov-2012)
|
|
Ref |
Expression |
|
Hypotheses |
rspc2.1 |
|
|
|
rspc2.2 |
|
|
|
rspc2.3 |
|
|
|
rspc2.4 |
|
|
Assertion |
rspc2 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspc2.1 |
|
| 2 |
|
rspc2.2 |
|
| 3 |
|
rspc2.3 |
|
| 4 |
|
rspc2.4 |
|
| 5 |
|
nfcv |
|
| 6 |
5 1
|
nfralw |
|
| 7 |
3
|
ralbidv |
|
| 8 |
6 7
|
rspc |
|
| 9 |
2 4
|
rspc |
|
| 10 |
8 9
|
sylan9 |
|