This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankr1a
Metamath Proof Explorer
Description: A relationship between rank and R1 , clearly equivalent to
ssrankr1 and friends through trichotomy, but in Raph's opinion
considerably more intuitive. See rankr1b for the subset version.
(Contributed by Raph Levien , 29-May-2004)
Ref
Expression
Hypothesis
rankid.1
⊢ A ∈ V
Assertion
rankr1a
⊢ B ∈ On → A ∈ R 1 ⁡ B ↔ rank ⁡ A ∈ B
Proof
Step
Hyp
Ref
Expression
1
rankid.1
⊢ A ∈ V
2
1
ssrankr1
⊢ B ∈ On → B ⊆ rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B
3
rankon
⊢ rank ⁡ A ∈ On
4
ontri1
⊢ B ∈ On ∧ rank ⁡ A ∈ On → B ⊆ rank ⁡ A ↔ ¬ rank ⁡ A ∈ B
5
3 4
mpan2
⊢ B ∈ On → B ⊆ rank ⁡ A ↔ ¬ rank ⁡ A ∈ B
6
2 5
bitr3d
⊢ B ∈ On → ¬ A ∈ R 1 ⁡ B ↔ ¬ rank ⁡ A ∈ B
7
6
con4bid
⊢ B ∈ On → A ∈ R 1 ⁡ B ↔ rank ⁡ A ∈ B