This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
rankr1b
Metamath Proof Explorer
Description: A relationship between rank and R1 . See rankr1a for the
membership version. (Contributed by NM , 15-Sep-2006) (Revised by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Hypothesis
rankr1b.1
⊢ A ∈ V
Assertion
rankr1b
⊢ B ∈ On → A ⊆ R 1 ⁡ B ↔ rank ⁡ A ⊆ B
Proof
Step
Hyp
Ref
Expression
1
rankr1b.1
⊢ A ∈ V
2
r1fnon
⊢ R 1 Fn On
3
2
fndmi
⊢ dom ⁡ R 1 = On
4
3
eleq2i
⊢ B ∈ dom ⁡ R 1 ↔ B ∈ On
5
unir1
⊢ ⋃ R 1 On = V
6
1 5
eleqtrri
⊢ A ∈ ⋃ R 1 On
7
rankr1bg
⊢ A ∈ ⋃ R 1 On ∧ B ∈ dom ⁡ R 1 → A ⊆ R 1 ⁡ B ↔ rank ⁡ A ⊆ B
8
6 7
mpan
⊢ B ∈ dom ⁡ R 1 → A ⊆ R 1 ⁡ B ↔ rank ⁡ A ⊆ B
9
4 8
sylbir
⊢ B ∈ On → A ⊆ R 1 ⁡ B ↔ rank ⁡ A ⊆ B