This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Rank
ssrankr1
Metamath Proof Explorer
Description: A relationship between an ordinal number less than or equal to a rank,
and the cumulative hierarchy of sets R1 . Proposition 9.15(3) of
TakeutiZaring p. 79. (Contributed by NM , 8-Oct-2003) (Revised by Mario Carneiro , 17-Nov-2014)
Ref
Expression
Hypothesis
rankid.1
⊢ A ∈ V
Assertion
ssrankr1
⊢ B ∈ On → B ⊆ rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B
Proof
Step
Hyp
Ref
Expression
1
rankid.1
⊢ A ∈ V
2
unir1
⊢ ⋃ R 1 On = V
3
1 2
eleqtrri
⊢ A ∈ ⋃ R 1 On
4
r1fnon
⊢ R 1 Fn On
5
fndm
⊢ R 1 Fn On → dom ⁡ R 1 = On
6
4 5
ax-mp
⊢ dom ⁡ R 1 = On
7
6
eleq2i
⊢ B ∈ dom ⁡ R 1 ↔ B ∈ On
8
7
biimpri
⊢ B ∈ On → B ∈ dom ⁡ R 1
9
rankr1clem
⊢ A ∈ ⋃ R 1 On ∧ B ∈ dom ⁡ R 1 → ¬ A ∈ R 1 ⁡ B ↔ B ⊆ rank ⁡ A
10
3 8 9
sylancr
⊢ B ∈ On → ¬ A ∈ R 1 ⁡ B ↔ B ⊆ rank ⁡ A
11
10
bicomd
⊢ B ∈ On → B ⊆ rank ⁡ A ↔ ¬ A ∈ R 1 ⁡ B