This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem rpred

Description: A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis rpred.1 φ A +
Assertion rpred φ A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpssre +
3 2 1 sselid φ A