This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: A product is nonzero iff both its factors are nonzero. (Contributed by NM, 18-Oct-2014)
|
|
Ref |
Expression |
|
Hypotheses |
drngmuleq0.b |
|
|
|
drngmuleq0.o |
|
|
|
drngmuleq0.t |
|
|
|
drngmuleq0.r |
|
|
|
drngmuleq0.x |
|
|
|
drngmuleq0.y |
|
|
Assertion |
drngmulne0 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngmuleq0.b |
|
| 2 |
|
drngmuleq0.o |
|
| 3 |
|
drngmuleq0.t |
|
| 4 |
|
drngmuleq0.r |
|
| 5 |
|
drngmuleq0.x |
|
| 6 |
|
drngmuleq0.y |
|
| 7 |
1 2 3 4 5 6
|
drngmul0or |
|
| 8 |
7
|
necon3abid |
|
| 9 |
|
neanior |
|
| 10 |
8 9
|
bitr4di |
|