This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024) (Proof shortened by BJ, 11-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucexeloni |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ||
| 2 | ordsuci | ||
| 3 | 1 2 | syl | |
| 4 | elex | ||
| 5 | elong | ||
| 6 | 5 | biimparc | |
| 7 | 3 4 6 | syl2an |