This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Definition and basic properties
opsrsca
Metamath Proof Explorer
Description: The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro , 8-Feb-2015) (Revised by Mario Carneiro , 30-Aug-2015)
(Revised by AV , 1-Nov-2024)
Ref
Expression
Hypotheses
opsrbas.s
⊢ S = I mPwSer R
opsrbas.o
⊢ O = I ordPwSer R ⁡ T
opsrbas.t
⊢ φ → T ⊆ I × I
opsrsca.i
⊢ φ → I ∈ V
opsrsca.r
⊢ φ → R ∈ W
Assertion
opsrsca
⊢ φ → R = Scalar ⁡ O
Proof
Step
Hyp
Ref
Expression
1
opsrbas.s
⊢ S = I mPwSer R
2
opsrbas.o
⊢ O = I ordPwSer R ⁡ T
3
opsrbas.t
⊢ φ → T ⊆ I × I
4
opsrsca.i
⊢ φ → I ∈ V
5
opsrsca.r
⊢ φ → R ∈ W
6
1 4 5
psrsca
⊢ φ → R = Scalar ⁡ S
7
scaid
⊢ Scalar = Slot Scalar ⁡ ndx
8
plendxnscandx
⊢ ≤ ndx ≠ Scalar ⁡ ndx
9
8
necomi
⊢ Scalar ⁡ ndx ≠ ≤ ndx
10
1 2 3 7 9
opsrbaslem
⊢ φ → Scalar ⁡ S = Scalar ⁡ O
11
6 10
eqtrd
⊢ φ → R = Scalar ⁡ O