This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
opelres
Metamath Proof Explorer
Description: Ordered pair elementhood in a restriction. Exercise 13 of TakeutiZaring
p. 25. (Contributed by NM , 13-Nov-1995) (Revised by BJ , 18-Feb-2022)
Commute the consequent. (Revised by Peter Mazsa , 24-Sep-2022)
Ref
Expression
Assertion
opelres
⊢ C ∈ V → B C ∈ R ↾ A ↔ B ∈ A ∧ B C ∈ R
Proof
Step
Hyp
Ref
Expression
1
df-res
⊢ R ↾ A = R ∩ A × V
2
1
elin2
⊢ B C ∈ R ↾ A ↔ B C ∈ R ∧ B C ∈ A × V
3
opelxp
⊢ B C ∈ A × V ↔ B ∈ A ∧ C ∈ V
4
elex
⊢ C ∈ V → C ∈ V
5
4
biantrud
⊢ C ∈ V → B ∈ A ↔ B ∈ A ∧ C ∈ V
6
3 5
bitr4id
⊢ C ∈ V → B C ∈ A × V ↔ B ∈ A
7
6
anbi1cd
⊢ C ∈ V → B C ∈ R ∧ B C ∈ A × V ↔ B ∈ A ∧ B C ∈ R
8
2 7
bitrid
⊢ C ∈ V → B C ∈ R ↾ A ↔ B ∈ A ∧ B C ∈ R