This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
brres
Metamath Proof Explorer
Description: Binary relation on a restriction. (Contributed by Mario Carneiro , 4-Nov-2015) Commute the consequent. (Revised by Peter Mazsa , 24-Sep-2022)
Ref
Expression
Assertion
brres
⊢ C ∈ V → B R ↾ A C ↔ B ∈ A ∧ B R C
Proof
Step
Hyp
Ref
Expression
1
opelres
⊢ C ∈ V → B C ∈ R ↾ A ↔ B ∈ A ∧ B C ∈ R
2
df-br
⊢ B R ↾ A C ↔ B C ∈ R ↾ A
3
df-br
⊢ B R C ↔ B C ∈ R
4
3
anbi2i
⊢ B ∈ A ∧ B R C ↔ B ∈ A ∧ B C ∈ R
5
1 2 4
3bitr4g
⊢ C ∈ V → B R ↾ A C ↔ B ∈ A ∧ B R C