This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than or equal to its product with another. Lemma 3.12 of Schloeder p. 9. (Contributed by NM, 21-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omword2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om1r | ||
| 2 | 1 | ad2antrr | |
| 3 | eloni | ||
| 4 | ordgt0ge1 | ||
| 5 | 4 | biimpa | |
| 6 | 3 5 | sylan | |
| 7 | 6 | adantll | |
| 8 | 1on | ||
| 9 | omwordri | ||
| 10 | 8 9 | mp3an1 | |
| 11 | 10 | ancoms | |
| 12 | 11 | adantr | |
| 13 | 7 12 | mpd | |
| 14 | 2 13 | eqsstrrd |