This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0ind-raph.1 | ||
| nn0ind-raph.2 | |||
| nn0ind-raph.3 | |||
| nn0ind-raph.4 | |||
| nn0ind-raph.5 | |||
| nn0ind-raph.6 | |||
| Assertion | nn0ind-raph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ind-raph.1 | ||
| 2 | nn0ind-raph.2 | ||
| 3 | nn0ind-raph.3 | ||
| 4 | nn0ind-raph.4 | ||
| 5 | nn0ind-raph.5 | ||
| 6 | nn0ind-raph.6 | ||
| 7 | elnn0 | ||
| 8 | dfsbcq2 | ||
| 9 | nfv | ||
| 10 | 9 2 | sbhypf | |
| 11 | nfv | ||
| 12 | 11 3 | sbhypf | |
| 13 | nfv | ||
| 14 | 13 4 | sbhypf | |
| 15 | nfsbc1v | ||
| 16 | 1ex | ||
| 17 | c0ex | ||
| 18 | 0nn0 | ||
| 19 | eleq1a | ||
| 20 | 18 19 | ax-mp | |
| 21 | 5 1 | mpbiri | |
| 22 | eqeq2 | ||
| 23 | 22 2 | biimtrrdi | |
| 24 | 23 | pm5.74d | |
| 25 | 21 24 | mpbii | |
| 26 | 25 | com12 | |
| 27 | 17 26 | vtocle | |
| 28 | 20 27 6 | sylc | |
| 29 | 28 | adantr | |
| 30 | oveq1 | ||
| 31 | 0p1e1 | ||
| 32 | 30 31 | eqtrdi | |
| 33 | 32 | eqeq2d | |
| 34 | 33 3 | biimtrrdi | |
| 35 | 34 | imp | |
| 36 | 29 35 | mpbird | |
| 37 | 36 | ex | |
| 38 | 17 37 | vtocle | |
| 39 | sbceq1a | ||
| 40 | 38 39 | mpbid | |
| 41 | 15 16 40 | vtoclef | |
| 42 | nnnn0 | ||
| 43 | 42 6 | syl | |
| 44 | 8 10 12 14 41 43 | nnind | |
| 45 | nfv | ||
| 46 | eqeq1 | ||
| 47 | 1 | bicomd | |
| 48 | 47 4 | sylan9bb | |
| 49 | 5 48 | mpbii | |
| 50 | 49 | ex | |
| 51 | 46 50 | sylbird | |
| 52 | 45 17 51 | vtoclef | |
| 53 | 52 | eqcoms | |
| 54 | 44 53 | jaoi | |
| 55 | 7 54 | sylbi |