This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sylan9bb

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)

Ref Expression
Hypotheses sylan9bb.1 φ ψ χ
sylan9bb.2 θ χ τ
Assertion sylan9bb φ θ ψ τ

Proof

Step Hyp Ref Expression
1 sylan9bb.1 φ ψ χ
2 sylan9bb.2 θ χ τ
3 1 adantr φ θ ψ χ
4 2 adantl φ θ χ τ
5 3 4 bitrd φ θ ψ τ