This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem cnmptid

Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis cnmptid.j φ J TopOn X
Assertion cnmptid φ x X x J Cn J

Proof

Step Hyp Ref Expression
1 cnmptid.j φ J TopOn X
2 mptresid I X = x X x
3 idcn J TopOn X I X J Cn J
4 1 3 syl φ I X J Cn J
5 2 4 eqeltrrid φ x X x J Cn J