This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Open sets of a metric space
mopnuni
Metamath Proof Explorer
Description: The union of all open sets in a metric space is its underlying set.
(Contributed by NM , 4-Sep-2006) (Revised by Mario Carneiro , 12-Nov-2013)
Ref
Expression
Hypothesis
mopnval.1
⊢ J = MetOpen ⁡ D
Assertion
mopnuni
⊢ D ∈ ∞Met ⁡ X → X = ⋃ J
Proof
Step
Hyp
Ref
Expression
1
mopnval.1
⊢ J = MetOpen ⁡ D
2
1
mopntopon
⊢ D ∈ ∞Met ⁡ X → J ∈ TopOn ⁡ X
3
toponuni
⊢ J ∈ TopOn ⁡ X → X = ⋃ J
4
2 3
syl
⊢ D ∈ ∞Met ⁡ X → X = ⋃ J