This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgrpd.s | ||
| issubgrpd.z | |||
| issubgrpd.p | |||
| issubgrpd.ss | |||
| issubgrpd.zcl | |||
| issubgrpd.acl | |||
| issubgrpd.ncl | |||
| issubgrpd.g | |||
| Assertion | issubgrpd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.s | ||
| 2 | issubgrpd.z | ||
| 3 | issubgrpd.p | ||
| 4 | issubgrpd.ss | ||
| 5 | issubgrpd.zcl | ||
| 6 | issubgrpd.acl | ||
| 7 | issubgrpd.ncl | ||
| 8 | issubgrpd.g | ||
| 9 | 1 2 3 4 5 6 7 8 | issubgrpd2 | |
| 10 | eqid | ||
| 11 | 10 | subggrp | |
| 12 | 9 11 | syl | |
| 13 | 1 12 | eqeltrd |