This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
isgrpde
Metamath Proof Explorer
Description: Deduce a group from its properties. In this version of isgrpd , we
don't assume there is an expression for the inverse of x .
(Contributed by NM , 6-Jan-2015)
Ref
Expression
Hypotheses
isgrpd.b
⊢ φ → B = Base G
isgrpd.p
⊢ φ → + ˙ = + G
isgrpd.c
⊢ φ ∧ x ∈ B ∧ y ∈ B → x + ˙ y ∈ B
isgrpd.a
⊢ φ ∧ x ∈ B ∧ y ∈ B ∧ z ∈ B → x + ˙ y + ˙ z = x + ˙ y + ˙ z
isgrpd.z
⊢ φ → 0 ˙ ∈ B
isgrpd.i
⊢ φ ∧ x ∈ B → 0 ˙ + ˙ x = x
isgrpde.n
⊢ φ ∧ x ∈ B → ∃ y ∈ B y + ˙ x = 0 ˙
Assertion
isgrpde
⊢ φ → G ∈ Grp
Proof
Step
Hyp
Ref
Expression
1
isgrpd.b
⊢ φ → B = Base G
2
isgrpd.p
⊢ φ → + ˙ = + G
3
isgrpd.c
⊢ φ ∧ x ∈ B ∧ y ∈ B → x + ˙ y ∈ B
4
isgrpd.a
⊢ φ ∧ x ∈ B ∧ y ∈ B ∧ z ∈ B → x + ˙ y + ˙ z = x + ˙ y + ˙ z
5
isgrpd.z
⊢ φ → 0 ˙ ∈ B
6
isgrpd.i
⊢ φ ∧ x ∈ B → 0 ˙ + ˙ x = x
7
isgrpde.n
⊢ φ ∧ x ∈ B → ∃ y ∈ B y + ˙ x = 0 ˙
8
3 5 6 4 7
grprida
⊢ φ ∧ x ∈ B → x + ˙ 0 ˙ = x
9
1 2 5 6 8
grpidd
⊢ φ → 0 ˙ = 0 G
10
1 2 3 4 5 6 8
ismndd
⊢ φ → G ∈ Mnd
11
1 2 9 10 7
isgrpd2e
⊢ φ → G ∈ Grp